Tair-分布式K/V结构数据存储系统

三 28th, 2013

1.简介

tair 是淘宝自己开发的一个分布式 key/value 存储引擎. tair 分为持久化和非持久化两种使用方式.

  • 1.非持久化的 tair 可以看成是一个分布式缓存。
  • 2.持久化的 tair 将数据存放于磁盘中。为了解决磁盘损坏导致数据丢失, tair 可以配置数据的备份数目, tair 自动将一份数据的不同备份放到不同的主机上, 当有主机发生异常, 无法正常提供服务的时候, 其于的备份会继续提供服务

Tair具有良好的架构,使得其在可扩展性、数据安全性方面都有较好的表现:

  • 基于对照表的灵活、良好的可扩展性
  • 轻量级的configserver
  • 抽象的存储引擎层,支持添加新的存储引擎
  • 自动的复制和迁移,对用户透明
  • 多机架和多数据中心的支持
  • 插件容器

Tair除了基本的key/value操作外,还提供了一些实用的功能,使得其适用的场景更多:

  • 数据的version支持
  • 原子计数器支持
  • item支持

2.Tair架构与机制

           tair 作为一个分布式系统, 是由一个中心控制节点和一系列的服务节点组成. 我们称中心控制节点为config server. 服务节点是data server. config server 负责管理所有的data server, 维护data server的状态信息. data server 对外提供各种数据服务, 并以心跳的形式将自身状况汇报给config server. config server是控制点, 而且是单点, 目前采用一主一备的形式来保证其可靠性. 所有的 data server 地位都是等价的.

structure[1]

3. 数据分布

Tair使用路由表来解决数据的路由问题。简单的路由表包含两列,一列是hash值(我们通常称其为桶——bucket),一列是负责这个hash值的节点。比如:

0       192.168.10.1
1       192.168.10.2
2       192.168.10.1
3       192.168.10.2
4       192.168.10.1
5       192.168.10.2

这里共6个桶,由两台机器负责,每台机器负责3个桶。客户端将key hash后,对6取模,找到负责的数据节点,然后和其直接通信。表的大小(行数)通常会远大于集群的节点数,这和consistent hash中的虚拟节点很相似。

假设我们加入了一台新的机器——192.168.10.3,Tair会自动调整对照表,将部分桶交由新的节点负责,比如新的表很可能类似下表:

0   192.168.10.1
1   192.168.10.2
2   192.168.10.1
3   192.168.10.2
4   192.168.10.3
5   192.168.10.3

在老的表中,每个节点负责3个桶,当扩容后,每个节点将负责2个桶,数据被均衡的分布到所有节点上.

注:tair的分布式策略是通过对照表的方式,hash对应server的结点信息,然后key,hash后取模,以上方式可以很好的增加与删除结点,以及后面所涉及的备份等,考虑的比较全面。我们项目中在实现redis分布式缓存处理时,服务器结点信息做一致性哈希,然后数据key做hash选取对应的结点信息实现,此方式实现,数据能够均均分布,在增加与删除结点时,需要重新init hash的TreeMap,总体来说还是比较平滑.

3.1. 增加或者减少data server的时候会发生什么

当有某台data server故障不可用的时候, config server会发现这个情况, config server负责重新计算一张新的桶在data server上的分布表, 将原来由故障机器服务的桶的访问重新指派到其它的data server中. 这个时候, 可能会发生数据的迁移. 比如原来由data server A负责的桶, 在新表中需要由 B负责. 而B上并没有该桶的数据, 那么就将数据迁移到B上来. 同时config server会发现哪些桶的备份数目减少了, 然后根据负载情况在负载较低的data server上增加这些桶的备份. 当系统增加data server的时候, config server根据负载, 协调data server将他们控制的部分桶迁移到新的data server上. 迁移完成后调整路由. 当然, 系统中可能出现减少了某些data server 同时增加另外的一些data server. 处理原理同上. 每次路由的变更, config server都会将新的配置信息推给data server. 在客户端访问data server的时候, 会发送客户端缓存的路由表的版本号. 如果data server发现客户端的版本号过旧, 则会通知客户端去config server取一次新的路由表. 如果客户端访问某台data server 发生了不可达的情况(该 data server可能宕机了), 客户端会主动去config server取新的路由表.

3.2. 发生迁移的时候data server如何对外提供服务

当迁移发生的时候, 我们举个例子, 假设data server A 要把 桶 3,4,5 迁移给data server B. 因为迁移完成前, 客户端的路由表没有变化, 客户端对 3, 4, 5 的访问请求都会路由到A. 现在假设 3还没迁移, 4 正在迁移中, 5已经迁移完成. 那么如果是对3的访问, 则没什么特别, 跟以前一样. 如果是对5的访问, 则A会把该请求转发给B,并且将B的返回结果返回给客户, 如果是对4的访问, 在A处理, 同时如果是对4的修改操作, 会记录修改log.当桶4迁移完成的时候, 还要把log发送到B, 在B上应用这些log. 最终A B上对于桶4来说, 数据完全一致才是真正的迁移完成. 当然, 如果是因为某data server宕机而引发的迁移, 客户端会收到一张中间临时状态的分配表. 这张表中, 把宕机的data server所负责的桶临时指派给有其备份data server来处理. 这个时候, 服务是可用的, 但是负载可能不均衡. 当迁移完成之后, 才能重新达到一个新的负载均衡的状态.

4. 轻量级的configserver

Tair的configserver用于维护集群的可用节点,根据可用的节点,build数据分布的对照表,Tair根据这张对照表决定数据的具体分布。除此之外,configserver还负责管理迁移的进度等。

但和传统集群的中心节点不同,Tair的configserver是个轻量级的服务,并不会成为集群的瓶颈。

Tair用户和configserver的交互主要是为了获取数据分布的对照表,当client获取到对照表后,会cache这张表,然后通过查这张表决定数据存储的节点,所以请求不需要和configserver交互,这使得Tair对外的服务不依赖configserver,所以它不是传统意义上的中心节点。

configserver维护的对照表有一个版本号,每次新生成表,该版本号都会增加。当有数据节点状态发生变化(比如新增节点或者有节点不可用了)时,configserver会根据当前可用的节点重新生成对照表,并通过数据节点的心跳,将新表同步给数据节点。

当客户端请求数据节点时,数据节点每次都会将自己的对照表的版本号放入response中返回给客户端,客户端接收到response后,会将数据节点返回的版本号和自己的版本号比较,如果不相同,则主动和configserver通信,请求新的对照表。

所以客户端也不需要和configserver保持心跳,以便及时的更新对照表。这使得在正常的情况下,客户端不需要和configserver通信,即使configserver不可用了,也不会对整个集群的服务造成大的影响。

有了configserver,客户端不需要配置数据节点列表,也不需要处理节点的的状态变化,这使得Tair对最终用户来说使用和配置都很简单。

注:简单来说configserver维护分布式对照表,此表有一个version,当有dataserver删除与增加时,configserver会重新生成对照表,并同步给所有的dataserver,而客户端第一次访问时会从configserver中坊取对应的对象表信息并缓存,然后数据key与对应的dataserver通信,每次跟dataserver交互时,会比较对照表的版本号,如果有更新,则会重新请求configserver读取对应的对照表。

 

5. 特性及机制

5.1 tair 的负载均衡算法是什么

tair 的分布采用的是一致性哈希算法, 对于所有的key, 分到Q个桶中, 桶是负载均衡和数据迁移的基本单位. config server 根据一定的策略把每个桶指派到不同的data server上. 因为数据按照key做hash算法, 所以可以认为每个桶中的数据基本是平衡的. 保证了桶分布的均衡性, 就保证了数据分布的均衡性.

5.2 桶在data server上分布时候的策略

程序提供了两种生成分配表的策略, 一种叫做负载均衡优先, 一种叫做位置安全优先: 我们先看负载优先策略. 当采用负载优先策略的时候, config server会尽量的把桶均匀的分布到各个data server上. 所谓尽量是指在不违背下面的原则的条件下尽量负载均衡. 1 每个桶必须有COPY_COUNT份数据 2 一个桶的各份数据不能在同一台主机上; 位置安全优先原则是说, 在不违背上面两个原则的条件下, 还要满足位置安全条件, 然后再考虑负载均衡. 位置信息的获取是通过 _pos_mask(参见安装部署文档中关于配置项的解释) 计算得到. 一般我们通过控制 _pos_mask 来使得不同的机房具有不同的位置信息. 那么在位置安全优先的时候, 必须被满足的条件要增加一条, 一个桶的各份数据不能都位于相同的一个位置(不在同一个机房). 这里有一个问题, 假如只有两个机房, 机房1中有100台data server, 机房2中只有1台data server. 这个时候, 机房2中data server的压力必然会非常大. 于是这里产生了一个控制参数 _build_diff_ratio(参见安装部署文档). 当机房差异比率大于这个配置值时, config server也不再build新表. 机房差异比率是如何计出来的呢? 首先找到机器最多的机房, 不妨设使RA, data server数量是SA. 那么其余的data server的数量记做SB. 则机房差异比率=|SA – SB|/SA. 因为一般我们线上系统配置的COPY_COUNT是3. 在这个情况下, 不妨设只有两个机房RA和RB, 那么两个机房什么样的data server数量是均衡的范围呢? 当差异比率小于 0.5的时候是可以做到各台data server负载都完全均衡的.这里有一点要注意, 假设RA机房有机器6台,RB有机器3台. 那么差异比率 = 6 – 3 / 6 = 0.5. 这个时候如果进行扩容, 在机房A增加一台data server, 扩容后的差异比率 = 7 – 3 / 7 = 0.57. 也就是说, 只在机器数多的机房增加data server会扩大差异比率. 如果我们的_build_diff_ratio配置值是0.5. 那么进行这种扩容后, config server会拒绝再继续build新表.

5.3 tair 的一致性和可靠性问题

分布式系统中的可靠性和一致性是无法同时保证的, 因为我们必须允许网络错误的发生. tair 采用复制技术来提高可靠性, 并且为了提高效率做了一些优化, 事实上在没有错误发生的时候, tair 提供的是一种强一致性. 但是在有data server发生故障的时候, 客户有可能在一定时间窗口内读不到最新的数据. 甚至发生最新数据丢失的情况.

5.4. 抽象的存储引擎

        Tair的存储引擎有一个抽象层,只要满足存储引擎需要的接口,便可以很方便的替换Tair底层的存储引擎。比如你可以很方便的将bdb、tc甚至MySQL作为Tair的存储引擎,而同时使用Tair的分布方式、同步等特性。

Tair默认包含两个存储引擎:mdb和fdb。

mdb是一个高效的缓存存储引擎,它有着和memcached类似的内存管理方式。但mdb支持使用share memory,这使得我们在重启Tair数据节点的进程时不会导致数据的丢失,从而使升级对应用来说很平滑,不会导致命中率的波动。

fdb是一个简单高效的持久化存储引擎,使用树的方式根据数据key的hash值索引数据,加快查找速度。索引文件和数据文件分离,尽量保持索引文件在内存中,以便减小IO开销。使用空闲空间池管理被删除的空间。

5.5. 自动的复制和迁移

        为了增强数据的安全性,Tair支持配置数据的备份数。比如你可以配置备份数为3,则每个数据都会写在不同的3台机器上。得益于抽象的存储引擎层,无论是作为cache的mdb,还是持久化的fdb,都支持可配的备份数。

当数据写入一个节点(通常我们称其为主节点)后,主节点会根据对照表自动将数据写入到其他备份节点,整个过程对用户是透明的。

当有新节点加入或者有节点不可用时,configserver会根据当前可用的节点,重新build一张对照表。数据节点同步到新的对照表时,会自动将在新表中不由自己负责的数据迁移到新的目标节点。迁移完成后,客户端可以从configserver同步到新的对照表,完成扩容或者容灾过程。整个过程对用户是透明的,服务不中断。

 

5.6. 多机架和多数据中心的支持

         为了更进一步的提高数据的安全性,Tair的configserver在build对照表的时候,可以配置考虑机房和机架信息。

比如你配置备份数为3,集群的节点分布在两个不同的机房A和B,则Tair会确保每个机房至少有一份数据。当A机房包含两份数据时,Tair会确保这两份数据会分布在不同机架的节点上。这可以防止整个机房发生事故和某个机架发生故障的情况。

这里提到的特性需要节点物理分布的支持,当前是通过可配置的IP掩码来区别不同机房和机架的节点。

5.7. 插件容器

Tair还内置了一个插件容器,可以支持热插拔插件。

插件由configserver配置,configserver会将插件配置同步给各个数据节点,数据节点会负责加载/卸载相应的插件。

插件分为request和response两类,可以分别在request和response时执行相应的操作,比如在put前检查用户的quota信息等。

插件容器也让Tair在功能方便具有更好的灵活性。

6. 功能支持

比较实用的功能,使得其适用的场景更多

6.1. version

Tair中的每个数据都包含版本号,版本号在每次更新后都会递增。这个特性可以帮助防止数据的并发更新导致的问题。

比如系统有一个value为”a,b,c”,A和B同时get到这个value。A执行操作,在后面添加一个d,value为”a,b,c,d”。B执行操作添加一个e,value为”a,b,c,e”。如果不加控制,无论A和B谁先更新成功,它的更新都会被后到的更新覆盖。

Tair无法解决这个问题,但是引入了version机制避免这样的问题。还是拿刚才的例子,A和B取到数据,假设版本号为10,A先更新,更新成功后,value为”a,b,c,d”,与此同时,版本号会变为11。当B更新时,由于其基于的版本号是10,服务器会拒绝更新,从而避免A的更新被覆盖。B可以选择get新版本的value,然后在其基础上修改,也可以选择强行更新。

6.2. 原子计数器支持

Tair从服务器端支持原子的计数器操作,这使得Tair成为一个简单易用的分布式计数器。

6.3. item支持

Tair还支持将value视为一个item数组,对value中的部分item进行操作。比如有个key的value为[1,2,3,4,5],我们可以只获取前两个item,返回[1,2],也可以删除第一个item。还支持将数据删除,并返回被删除的数据,通过这个接口可以实现一个原子的分布式FIFO的队列。

参考:

~~~EOF~~~





除非注明,本站文章均为原创。本文基于 BY-NC-SA 协议进行授权,欢迎转载,演绎或用于商业目的,但是必须保留本文的署名 metaboy(包含链接).

本文链接地址: http://blog.wangyuxiong.com/archives/51941

订阅本站:http://www.wangyuxiong.com/feed

目前还没有任何评论.

无觅相关文章插件,快速提升流量